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 Post-translational modifications (PTMs) are vital cellular control mechanism, which affect
protein properties, including folding, conformation, activity and consequently, their
functions. As a result they play a key role in various disease conditions, including cancer
and diabetes. Proteomics as a rapidly growing field has witnessed tremendous
advancement during the last decade, which has led to the generation of prodigious
quantity of data for various organisms' proteome. PTMs being biologically and chemically
dynamic process, pose greater challenges for its study. Amidst these complexities
connecting the modifications with physiological and cellular cascade of events are still
very challenging. Advancement in proteomic technologies such as mass spectrometry
and microarray provides HT platform to study PTMs and help to decipher role of some of
the very essential biological phenomenon. To enhance our understanding of various
PTMs in different organisms, and to simplify the analysis of complex PTM data, many
databases, software and tools have been developed. These PTM databases and tools
contain crucial information and provide a valuable resource to the research community.
This article intends to provide a comprehensive overview of various PTM databases,
software tools, and analyze critical information available from these resources to study
PTMs in various biological organisms.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The completion of genome projects has accelerated the anal-
ysis of proteome; however, due to the complexity of proteins
its study is more challenging than any other biomolecules.
This complexity arises due to the biological phenomenon
such as gene splicing to form different isoforms and various
post-translational modifications (PTMs), which gives rise to
enormous number of proteins, about three orders of magni-
tude higher than the total number of genes encoded in ge-
nome [1,2]. As the name indicates for PTMs, the process of
protein modifications takes place after translation of mRNA
into a protein. All proteins undergo appreciable amount of
PTMs to make biologically active form, and this dynamic pro-
cess occurs in various cell compartments to decide the func-
tion of modified protein. About 300 different types of PTMs
have been reported till date and many more are still being
Fig. 1 – Creation of PTM databases and tools: The general schem
PTM data from various sources are continuously annotated in th
machine learning techniques thereby building a classifier, which
sequence. These tools and databases are made publically availa
reported [2]. PTMs, also designated as ‘cellular switches’, pro-
vide diverse role to proteins as per cellular requirements. For
instance, ubiquitination is a predominant phenomenon, in
which sequential, covalent attachment of ubiquitin on a pro-
tein leads to the degradation and decides the fate of protein.
Several signaling pathways are majorly regulated through
phosphorylation cascades. Hence it is impossible to judge on
protein nature and function without having a precise idea
about what PTM it undergoes in a given time span.

Initially PTM studies were carried out on selected candi-
dates with mutational screens, western blotting, and tracking
with radio labeling; however, recent advancements in mass
spectrometry and microarray have enabled HT screening
and quantification of PTMs, with sensitivity at subattomolar
level [2]. Each run of such HT screening experiment generates
large amount of data, which requires intense analysis and in-
terpretation to provide clues for its biological significance.
e of creation of database using database building platforms.
e databases. As a result the curated data are utilized to teach
mimics biological condition and predicts PTM in the input

ble over World Wide Web.



Table 1 – PTMs processes and biological significance.
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Therefore, various tools have been developed to enable study
of PTMs. The PTM data is shared over World Wide Web in da-
tabases, which can be successfully used by the scientific com-
munity [3]. Furthermore, the experimentally generated PTM
data can be used to teach the computerized machine learning
algorithms, which can enable in silico prediction of PTMs site
and its functions. The computational analysis can save signif-
icant time and resources involved in HT screening of PTMs,
and therefore, generation of data, curation and developing
predictors goes simultaneously (Fig. 1). These PTM databases
and tools not only serve as a resource to study the PTMs but
also provide an insight into PTM biology and mechanistic in-
sights of complex cellular machinery involved in signaling
pathways, metabolism, phylogenetic trees and evolution.
This review intends to provide a comprehensive description
of various databases and software tools used to study PTM bi-
ology. These PTM databases and tools are rapidly evolving and
we have made an effort to provide the latest compendium of
PTM computational resources and its applications in biologi-
cal context of different groups of organisms.
2. Post-translational modifications

The Human Genome Project revealed that there are about
30,000 genes in human, which raised an obvious question
about number of proteins that outnumber the genes. How
millions of proteins are regulated and perform its function
are complex questions, which are investigated through prote-
omics. Splicing and PTMs are suggested to give rise to tremen-
dous complexity, and PTMs diversify the function of proteins
by introducing chemical modifications. PTMs act as molecular
switches and control biological activity in much orchestrated
manner; and its perturbation leads to the deregulation of cell
machinery. It is PTM that mostly dictates the fate of a protein
with respect to folding, cellular localization and life span. Al-
most all the proteins undergo one or other type of PTM during
or after their synthesis in a well-defined cellular location.
Perhaps few PTMs occur after naive protein emerges out of ribo-
some protein synthesis machinery, leading to the modification
of side chain or main skeleton of protein, which in most cases
make protein biologically functional. Therefore, linear or one-
dimensional genetic message from mRNA is translated into the
three dimensional structure of proteins [2].

A PTM may be reversible or irreversible. For instance, phos-
phorylation results in addition of phosphate moiety on the
protein backbone. It is a reversible process, whereas proteolytic
cleavage of signal peptides is an irreversible one. PTMsaremostly
aided by specific enzymes, except a few that undergo auto-
modification such as modifications of green florescent protein
and auto-phosphorylation of kinases. PTMs can be grouped
majorly in two types, covalent attachment of chemical group
and covalent cleavage of side chains. Almost all the amino acids
undergo the process of PTM, except Leu, Ile, Val, Ala, and Phe [4].

It has been reported that PTMs are highly conserved with
respect to evolution. Troponin T, which is part of troponin
protein complex, is conserved with respect to phosphoryla-
tion in mouse and human [5]. Evolutionary conservation pat-
terns with respect to phosphorylation were studied in E. coli
and B. subtilis by Boris Macek et al. and it was reported that
phosphoproteins and phosphosites are highly conserved in
phylogenetic tree as compared to the non-phosphorylated
forms [6]. Table 1 provides an overview of commonly reported
PTMs and their biological significance.

There is a growing interest of scientific community to deci-
pher the role of PTMs in various biological contexts, which is
evident from a simple key word search “posttranslational
modification” in Pubmed that retrieved over 36,500 articles.
The PTMs are reported to be associated with major human
diseases such as cancer, diabetes, cardiovascular disorders
etc. In Alzheimer's disease, the tau proteins aggregate due to
abnormal phosphorylation process [7]. The phosphorylation
aswell as other PTMs such asnitration, glycation, glycosylation,

Unlabelled image
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polyamination, ubiquitination and oxidation is also reported to
be associatedwith variousneurodegenerative disorders. Andro-
gen receptors,which are dynamically regulated through various
PTMs, are strongly correlated with manifestation of prostate
cancer [8]. Hence studying PTMsmay enhance our understand-
ing for various human diseases.
3. Techniques to study PTM

Detection of subtle changes, which occur during the PTMs,
poses challenge to even advance proteomic techniques. De-
termination of changes to very minute level and correlation
with biological phenomenon remain challenging for modern
technologies. PTMs bring in either addition of chemical moie-
ties or removal of few amino acids; therefore, difference in
mass must be apparent when measured. For instance, in pal-
mitoylation, addition of palmitic acid on the cystein residue
yields the addition of 238 Da whereas; methylation of lysine
Fig. 2 – Proteomic techniques for profiling PTMs. Present day cut
PTMs. Gel-based or gel-free approaches are widely used. Method
extensively used for proteome wide screening of PTMs. Similarl
using various purification strategies. Essentially shotgun gunme
mass spectrometer involving soft ionization techniques such as
using high-resolution MS platforms such as FTICR for elucidating
2-DE, helps in separation and visualization of proteins. After pro
residue causes the addition of 14 Da to the total mass. The
bulkier modifications such as ubiquitination may result in
mass difference of about 1 kDa. There are many approaches
ranging fromgel-based techniques,mass spectrometry,microar-
rays, peptide library screening etc. that are currently used to
study PTMs (Fig. 2). As per the research questions, either whole
proteome or only an enriched part containing proteins with
PTMs of specific interest can be screened. Affinity based enrich-
ments, immunopurification and metal affinity chromatography
are commonly used strategies for the purification of proteins
containing specific PTM. Immobilized metal affinity chromatog-
raphy (IMAC) purification is a common chemical affinity strategy
for the enrichment of phosphoproteins, whereby immobilized
Fe3+ ions selectively bind to the phosphorylated peptides. Other
metal oxide affinity resins such as TiO2, Fe3O4 are also commonly
used [9].

Conventional proteomic approaches such as gel-based
techniques have been used to profile global PTMs in a given
biological condition. Two dimensional gel electrophoresis (2-
ting edge technologies enable high throughput screening of
s such as mass spectrometry, microarray and 2-DE are

y, a subclass of proteins with specific PTM can be segregated
thod involves analysis of proteolytically digested peptide over
ESI and MALDI. Top-down MS technique typically involves
PTM patterns of intact proteins. Gel-based approach such as
tein separation gels can be stained with PTM specific stain.

image of Fig.�2
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DE) separates proteins on the basis of isoelectric point fol-
lowed by molecular weight. After protein separation the gel
can be stained with PTM specific stains such as Pro-Q Dia-
mond for phosphoproteins. This approach can be used to
compare the differential expression of PTMs in control and
treatment by comparing the staining intensity. Zong et al.
used 2-DE to understand PTM patterns of murine cardiac 20S
proteasomes and their associated proteins. This study
revealed phosphorylation, glycosylation, nitrosylation, and
oxidation patterns of 20S proteosomes [10]. Although the
gel-based approaches are convenient to use, it has a few
drawbacks with regard to robustness, sensitivity and gel-to-
gel reproducibility. Characterization of these resolved pro-
teins subsequently requires other technique such as mass
spectrometry to identify the proteins (Fig. 2).

Advancement in analytical techniques and evolution of
various high-resolution mass spectrometers during the last
decade has accelerated the large scale screening of PTMs
from various biological sources. Advent of shotgun based MS
methods has accelerated the rapid and direct identification
of proteins and PTMs from complex mixtures. In this ap-
proach typically a protein mixture is digested with proteolytic
enzyme such as trypsin, and resultant peptides are then sep-
arated over liquid chromatography (typically reverse phase
chromatography) followed by MS/MS scanning. Identification
of proteins and associated PTMs can be done by software
and searching against databases. The software matches the
submitted tandem MS data with in silico MS data in databases
[11]. Trypsin being a versatile enzyme is regarded as a general
choice as a protease but in specific cases other enzymes such
Arg-C, Lys-C are also employed. For instance histones, which
are regulated through methylation and acetylation, are
digested with Arg-C, Lys-C which provides better coverage
than trypsin. The most commonly used PMF analysis tool
Mascot is linked to PTM database Unimod. The inbuilt algo-
rithm of Mascot searches the mass difference by matching
the input spectra with that of the reference spectra in data-
bases and predicts the type of PTM [12].

Top down mass spectrometry involves analysis of intact
proteins using high-resolution MS techniques. High-
resolution MS platforms such as FTICR-MS, Orbitrap-MS with
PTM friendly dissociation techniques such as Electron capture
dissociation (ECD) and Electron Transfer Dissociation (ETD)
are mainly used [13]. Data resulted from MS can then be sub-
mitted to search tool such as ProSight PTM to characterize
the PTM patterns and establish the identity of protein [14].
MS based quantification of PTMs, absolute or relative has
gained increasing interest. Labeling of proteins is used as
tool for relative quantification. Metabolic labeling methods
such as SILAC are now well established for label-based quan-
tification of PTMs. In SILAC cells are grown in different media
containing light or heavy amino acids and quantification is
performed on the basis of inherent mass difference between
light and heavy forms [15]. SILAC was used to study histone
modifications specifically lysine acetylation and methylation
patterns by Cuomo A et al. [16]. Largest phosphorylation site
measurement by Olsen JV et al. used SILAC as tool for quanti-
fication and identified 20,443 unique phosphorylation sites
[17]. However, the metabolic labeling can only be incorporated
into the living cells. Other chemical labeling techniques such
as iTRAQ are also used for PTM quantification, which has flex-
ibility with respect to labeling which involves derivatization of
primary amine group with isobaric tags. iTRAQ was used
to identify quantitative differential expression patterns of
O-GlcNAc sites with respect to Alzheimer's disease [18] and
T-Cell signaling cascade related phosphoproteomic changes
in diabetic mouse [19]. The label-free quantification of PTMs,
which involves comparison of different LC runs on the basis
of parameters such as peak area and spectral count is evolv-
ing rapidly. A label-free quantification study by Hoffert et al.
identified and quantified 714 phosphorylation sites on 223
unique phosphoproteins through LC–MS/MS-neutral loss
scanning strategy [20].

Several large-scale PTM screens have resulted to provide
enormous and valuable data. A study by Bo Zhai et al. deter-
mined large-scale phosphorylation sites (~13,720) in 2702
proteins in Drosophila embryos [21]. Using MS approach,
Choudhary and colleagues studied lysine acetylation in 1750
proteins and identified 3600 potent acetylation sites [22].
This dataset was further used to train Support Vector Machine
(SVM) based acetylation predictor. This predictor is available
on line in PHOSIDA resource for public use. One of the largest
MS based screening of glycoproteins used high-resolution MS
based screening in mouse tissue and revealed 6367 high
confident N-glycosylation sites on 2352 proteins [23]. One of
the largest human ubiquitylation site screening by Wagner
et al. revealed 11,054 ubiquitylation sites on 4273 proteins
[24]. We have described only few studies but there are also
other large scale screening studies, which have resulted into
generation of large PTM data sets. Some of these data are
also deposited into databases and further used for developing
trained algorithm of PTM predictor.

Another technique, protein microarray, is one of the versa-
tile platforms for HT screening of PTMs. Protein microarrays
are miniaturized arrays containing small amounts of immobi-
lized proteins. Kung et al. group developed a lectin-binding
assay for screening glycoproteins on yeast proteome arrays
that revealed 534 glycoproteins [25]. A comprehensive protein
array study by Jason Ptacek et al. elucidated about 4000 phos-
phorylation sites in 1325 proteins [26]. Mitogen-activated pro-
tein kinase–substrate interactions were studied using protein
microarrays and study revealed 570 MPK substrates in Arabi-
dopsis thaliana [27]. Yeast two hybrid system has also been
used for large scale screening of PTMs [2]. Despite having ad-
vancements in several HT techniques, studying short-lived
and often chemically labile PTMs and its characterization re-
mains challenging due to the dynamic range and detection
limit etc. Many advanced technologies have attempted to
bridge this gap; however, no single technique can be solely re-
lied for screening all the PTMs in a given biological question.
4. Classification of databases

PTM databases are continuously growing in size due to the ad-
vent of high-throughput screening technologies. These PTM
databases feature vast variety of data ranging from viruses
to humans. Some of these databases are specific to a PTM
and others are composed of wide variety of PTMs in a single
platform. For instance, databases such as PhosphoBase, O-
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glycobase are specifically focused for one type of PTM, where-
as Swiss-Prot, HPRD, dbPTM, RESID, PHOSIDA etc. provide de-
tailed information for different types of PTMs (Table 2). These
databases and resources have accelerated the analysis, visu-
alization and prediction of PTMs in biological contexts. The
data in most of the PTM databases are derived empirically or
curated manually through the literature. For example, HPRD
is a manually curated database, which has more than 93,710
entries and it is linked to other entities such as PhosphoMotif
Finder for further reference [28]. Swiss-Prot (UniProt), one of
the largest collections of various PTM types, is non-
redundant and enables users to get amass information on a
single platform. These databases are collection of variety of
information in one place, thereby trying to provide complete
biological information to the entries present [29]. Fig. 3 repre-
sents general and PTM specific databases.

4.1. Phosphorylation databases

The PTMs act as a biological switch to activate or deactivate
molecules by signal transduction pathways. Protein phos-
phorylation is one of the most-studied PTMs, which accounts
for over 30% of all PTMs. Phosphorylation process involves
transfer of phosphate moiety from ATP to a protein (serine,
threonine or tyrosine residues) by enzyme kinases resulting
in formation of ADP. Phosphorylation is biologically signifi-
cant because this ubiquitous regulatory mechanism controls
processes such as cellular growth, differentiation, apoptosis
and DNA repair etc. [2,30]. Many of the kinases are being
used as potential drug targets to treat some of the major dis-
eases such as cancer. It is predicted that there are approxi-
mately 500,000 phosphorylation sites in human proteome
alone [30], which emphasizes that there is a great need to de-
cipher the role of protein phosphorylation.

Mass spectrometry is widely used to study phospho-
proteome. As discussed in the previous section, several
large-scale MS based studies have identified thousands of
phosphoproteins and phosphosites. Several databases help
in mining phosphorylation data. PhosphoBase was the first
Table 2 – General a PTM databases with web links and salient f

SR no Database/tool (predictor)

1 Human Protein Reference Database [HPRD] [28]
http://www.hprd.org/

HPRD provides d
93,710 PTMs). Ex

2 dbPTM [53]
http://dbPTM.mbc.nctu.edu.tw/

Information on P
Contains 36,466

3 SysPTM [77]
http://lifecenter.sgst.cn/SysPTM

PTM research to
PTMCluster. Nea
on 38,674 protein

4 RESID [78]
http://www.ebi.ac.uk/RESID/

Annotations and
including N-term
559 entries.

5 Swiss Prot [29]
http://www.ebi.ac.uk/uniprot/

One of the larges
Protein variants.

6 FindMod [79]
http://expasy.org/tools/findmod/

Tool that examin
theoretical pepti

a These are general databases (and tools) which provide PTM as well as
report of a phosphorylation database. This database curated ex-
perimentally determined data from literature,major protein se-
quence databases such as SwissProt, and protein information
resource [31]. This database initially had 156 phosphoproteins
with 398 phosphorylation sites but since then large number of
databases have been created and useful data has been accumu-
lated in these databases. For instance, one suchwidely used da-
tabase Phospho.ELM, which is a manually curated database of
experimentally verified non-redundant phosphosites of eu-
karyotic origin, contains 42,575 serine, threonine and tyrosine
phosphorylation sites and information for 310 different ki-
nases. For a given input Phospho.ELM provides vast variety
of information such as sequence of phosphosite, related ki-
nase, and evolutionary significance about conservation of
phosphosites, structure through phospho 3D, binding motif
and molecular interaction network. This database is also
linked to predictor application called ELM [32]. PHOSIDA
(PHoshorylation Site DAtabase) database data is derived
from MS screening of phosphosites. Mann and colleagues
screened about 2244 proteins and obtained 6600 phosphoryla-
tion sites in HeLa cells, which were deposited into PHOSIDA.
PHOSIDA also has information of phosphoproteins for 8 other
organisms. Although this database was initially established as
a phosphorylation database, later addition of PTM predictor
and motif search made this resource more comprehensive.
PHOSIDA is regularly updated through Swissprot and TIGR da-
tabases [33].

PhosphoSitePlus is one of the biggest collections of PTM in-
formation, which contains information on several types of
PTMs of enormous proteins from in vivo and in vitro, originat-
ing from various vertebrates and invertebrates. Previous ver-
sion of Phosphosite only targeted phosphorylation but
PhosphoSitePlus provides wide range of information on phos-
phorylation as well as other types of PTMs such as acetylation,
methylation, and ubiquitination. It contains data from pub-
lished datasets and previous, valid unpublished data generat-
ed from Cell Signaling Technologies. A few of the applications
of PhosphoSitePlus such as search of PTM sites based on
tissue, disease, cell lines make it comprehensive and
eatures.

Features

etails for protein interactions and PTMs (30,047 human proteins and
tra features such as PhosphoMotif Finder and Human Proteinpedia.
TM sites from Swiss-Prot, PhosphoELM, UbiProt and O-GLYCBASE.
non-redundant empirical PTM sites and a PTM predictor.
ol with four tools; PTMBlast, PTMPathway, PTMPhylog maps and
rly 50 PTM types, 117,350 experimentally determined PTM sites
s.
structures for protein pre-, co- and post-translational modifications
inal, C-terminal and peptide chain cross-links modifications.

t comprehensive resources. Experimental PTMs, Putative PTMs,

es PMF data. Finds mass differences between empirical and
des. Over 22 types of PTMs are considered.

other details.

http://dbPTM.mbc.nctu.edu.tw/
http://lifecenter.sgst.cn/SysPTM
http://www.ebi.ac.uk/RESID/
http://www.ebi.ac.uk/uniprot/
http://expasy.org/tools/findmod/


Fig. 3 – General and PTM specific databases: (A) Common PTM repositories share large amount of data pertaining to different
types of PTMs on a single platform. SwissProt is one of the largest continuously updated, non-redundant repositories for PTM
data. This encompasses enormous data on various types of PTMs (B) Databases for specific PTM store data with respect to one
type of PTM. One of the typical databases such as Phospho.ELM has largest collected information on phosphorylation.
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informative [34]. Structural repositories such as Phospho3D
contain experimentally verified 3D structures of phosphoryla-
tion sites. Most of the databases enable various search options
such as name of kinase; PDB identification code etc., which
make the search process simple [35]. PlantsP, a plant specific
database, combines information derived from plant genomic
sequences with experimentally derived functional genomics
data on plant kinases and phosphatases [36]. PhosphoPep pro-
vides an idea about the signal transduction pathways by link-
ing kinases with their upstream and downstream molecules
in various organisms such as S. cerevisiae, C. elegans, D. melano-
gaster and H. sapience. This database contains LC–MS/MS gen-
erated data, which is searched from standard protein
database and validated further. The relevant pathways of pro-
teins of interest can also be visualized [37]. LymPHOS data-
base is focused on phosphoproteome of human lymphocytes
and it elucidates key role of various signal transduction path-
ways and altered immune response. This database provides
options of searching proteins and peptide sequences, with
the mass spectral information [38]. A comprehensive view of
most widely used databases and tools for phosphorylation re-
search is depicted in Table 3, Figs. 3 and 4.

4.2. Glycosylation databases

Glycosylation involves linking saccharides to proteins in pres-
ence of glycosyltransferase enzymes, giving rise to a glycopro-
tein. Glycosylation process mainly occurs in endoplasmic
reticulum and golgi complex of the cellular compartment
and major glycoproteins are seen localized to the cell surface.
Like-wise glycation, a non-enzymatic process involves attach-
ment of sugar moieties to proteins specifically at lysine

image of Fig.�3


Table 3 – Databases and tools to study phosphorylation.

SR
no

Database/tool (predictor) Features

1 The Phosphorylation Site Database [80]
http://www.phosphorylation.biochem.vt.edu/

PTMs of prokaryotes of the domains archaea and bacteria.
Directly linked with RESID, O-GLYCBASE etc.

2 Phospho.ELM [32]
http://phospho.elm.eu.org/

One of the largest DB of eukaryotic p-site. Contains 42,575 Serine,
Threonine and Tyrosine non-redundant p-sites.

3 PhosPhAt [75]
http://phosphat.mpimp-golm.mpg.de

DB: p-sites in A thaliana identified by MS.
Predictor, trained on the experimental dataset. Predicts p-sites in
protein sequence.

4 PHOSIDA [33]
http://www.phosida.com/

PTM DB of wide range of organisms. Phosphorylation, acetylation,
N-Glycosylation information. 70,095 p-sites on 23,669 proteins
Predictor, predicts high confidence phosphosites, with the Support vector machines
(SVMs) algorithm. It also predicts other types of PTMs such as acetylation.

5 PhosphoPep [37]
http://www.phosphopep.org/

Phosphoproteome resource for S cerevisiae, C. elegans, D. melanogaster
(Kc167 cells) and Homo sapiens. Based on MS data. 9000 identified p-sites in
yeast, 10,000 phosphorylation sites of nearly 4600 phosphoproteins
D. melanogaster and 3980 p-sites in humans.

6 PhosphoPOINT [81]
http://kinase.bioinformatics.tw/

Human kinase interactome and p-protein DB. 518 known human
serine/threonine/tyrosine kinases. 4195 p-proteins.

7 PhosphoNET–Human Phosphosite KnowledgeBase [82]
http://www.phosphonet.ca/

Human p-sites. Over 657,391 p-sites in 23,469 represented proteins.

8 Phospho3D [35]
http://cbm.bio.uniroma2.it/phospho3d

DB of 3D structures of p-sites. Retrieves data from the phospho.ELM
Database enriches further at structural level.

9 ProMEX [83]
http://promex.pph.univie.ac.at/promex/

Mass spectral reference DB for tryptic digested proteins and protein p-sites
of 14 plant species including Arabidopsis thaliana. Contains manually
validated mass spectra.

10 PhosphoSitePlus [34]
[http://www.phosphosite.org]

One of the largest DB of protein phosphorylation majorly in humans and
mouse, also has information on other organisms such as rabbit, hamster etc.
Includes information on other types of PTMs such as ubiquitination etc.

11 PhosphoregDB [84]
http://phosphoreg.imb.uq.edu.au/

Tissue and sub-cellular distribution of mouse protein kinases
and phosphatases.

12 PhosphoGRID [85]
http://phosphogrid.org/

DB of experimentally verified in vivo p-sites in S cerevisiae.
Entry over 5000 p-sites.

13 Plant Protein Phosphorylation Database (P3DB) [86]
http://digbio.missouri.edu/p3db/

Plant protein phosphorylation DB. Involves data of 4 different plant species.
Over 31,000 p-sites from 10,400 proteins.

14 LymPHOS [38]
http://www.lymphos.org

Database of phosphoproteome of human lymphocytes. Annotates data
generated by MS based experiments.

15 NetworKIN [87,88]
http://networkin.info/search.php

Provides latest collection of phosphoproteins through connection
with PhosphoELM.
Predictor, predicts in vivo kinase–substrate relationships. Adopts inbuilt
NetworKIN method for search.

16 Predikin [89]
http://predikin.biosci.uq.edu.au/

Predikin predicts protein kinase peptide and likely p-sites for a specific
protein kinase, links substrates to kinase sequences.

17 Protein kinase resource [90]
http://pkr.genomics.purdue.edu/pkr/Welcome.do

Integrated view of the protein kinase superfamily, structural representation
along with complete assistance for kinases study. Provides information on
signaling pathway and associated diseases.

18 Kinomer [91]
http://www.compbio.dundee.ac.uk/kinomer/

Systematically classified protein kinases. Annotations of kinases for about
43 organisms.

19 KinG [92]
http://king.mbu.iisc.ernet.in/

Collection of protein kinases in genomes. Protein Kinases information on
D. melanogaster, A. thaliana, H. sapiens, C. elegans and S. cerevisiae. In addition
Protein Kinases information on 8 archaeal genomes and 27 bacterial genomes.

20 PlantsP [36]
http://plantsp.genomics.purdue.edu/

DB which connects functional genomics data to sequence in context of plant
(Kingdome viridiplantae) kinases and phosphatases.

21 PepCyber: P~Pep [93]
http://www.pepcyber.org/PPEP/

DB of human Protein–Protein Interactions mediated by Phosphorylation
binding domains (PPBDs). 11,269 records of interactions between 387 PPBDs
proteins and 1471 substrate proteins.

22 PhosSNP [94]
http://phossnp.biocuckoo.org/

Database of phosphorylation related non-synonymous SNPs in Humans.

23 ProMost [95]
http://proteomics.mcw.edu/promost

Tool calculating the pI and molecular weight of phosphorylated and modified
proteins on 2D gels.

24 PhosphoScore [96]
http://dir.nhlbi.nih.gov/papers/lkem/phosphoscore/

Java based software for phosphorylation site assignment tool for MS data.

25 NetPhos [97]
http://www.cbs.dtu.dk/services/NetPhos/

Predicts non-kinase specific phosphorylation status based on sets of
experimentally validated Ser, Thr and Tyr p-sites. ANN used.

26 NetPhosK [39]
http://www.cbs.dtu.dk/services/NetPhosK/

Predicts kinase-specific p-sites based on sets of Ser, Thr and Tyr p-sites.
ANN used.
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Table 3 (continued)

SR
no

Database/tool (predictor) Features

27 NetPhosBac [73]
http://www.cbs.dtu.dk/services/NetPhosBac

Predicts Ser/Thr p-sites in bacterial proteins. ANN used.

28 NetPhosYeast [74]
http://www.cbs.dtu.dk/services/NetPhosYeast/

Predicts p-sites in yeast proteins. ANN used.

29 KinasePhos [98]
http://KinasePhos2.mbc.nctu.edu.tw/

SVM based predictor for protein kinase-specific p-sites prediction.
SVM utilizes features such as solvent accessibility and sequences based
amino acid coupling patterns.

30 PostMod [99]
http://pbil.kaist.ac.kr/PostMod

Prediction of kinase-specific p-sites. Training data was retrieved from
PhosphoELM.

31 DISPHOS [100]
http://www.ist.temple.edu/disphos/

Disorder-Enhanced p-site predictor. Uses logistic regression based
linear predictor model.

32 NetPhorest [101]
http://netphorest.info/

Catalogue of linear motifs involved in phosphorylation based signaling.
Information on 179 kinases.

33 pkaPS [102]
http://mendel.imp.ac.at/pkaPS/

Prediction of protein kinaseA p-sites. High confidence prediction with
96% sensitivity and 94% specificity.

34 Group-based Prediction system (GPS) [103]
http://gps.biocuckoo.org/

Prediction of p-sites for 408 human kinases. Group based scoring system,
uses BLOSUM62 for scoring.

35 Scansite [104]
http://scansite.mit.edu.

Predicts cell signaling interactions using short sequence motifs within
proteins that are likely to be phosphorylated by specific protein kinases.

36 PhosphoMotif Finder [105]
http://www.hprd.org/PhosphoMotif_finder

Literature based information on kinase and phosphatase substrates and
binding motifs.

37 MetaPredPS [106]
http://MetaPred.biolead.org/MetaPredPS

Predicts p-sites of major S/T kinase families: CDK, CK2, PKA, and PKC.
Makes use of element predictors such as GPS, KinasePhos, NetPhosK, PPSP,
PredPhospho and Scansite.

38 CRPhos [107]
http://www.ptools.ua.ac.be/CRPhos

Prediction of kinase-specific phosphorylation sites. Uses CRF conditional
random fields.

39 PhoScan [108]
http://bioinfo.au.tsinghua.edu.cn/phoscan/

Prediction of kinase-specific phosphorylation sites with sequence features.
Uses log-odds ratio approach.

40 Prediction of PK-Specific Phosphorylation
Site (PPSP) [109]
http://ppsp.biocuckoo.org/

Prediction of kinase-specific phosphorylation sites. Uses BDT.

41 PhosphoBlast [110]
http://phospho.elm.eu.org/pELMBlastSearch.html

Predictor in PhosphoELM. Tool which identifies specific phosphosite mutations.
Matches p-peptides sharing the p-sites within and across species.

42 Motif-X [55]
http://motif-x.med.harvard.edu/

Predictor of phosphorylation short linear motif. First ever substrate driven
approach to predict motifs.

P-site—phosphorylation site, p-proteins—phoshoproteins, DB—database, MS—mass spectrometry, p-peptides—Phosphopeptides, BDT = Baysian
Decision Theory, CRF = Conditional Random Fields, SVM—Support Vector Machines, ANN = Artificial neural network.
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residue. Depending on the linkage between the amino acid
and the sugar moiety, there are 4 types of glycosylations,
namely; N-linked glycosylation, O-linked glycosylation, C-
mannosylation and Glycophosphatidlyinositol anchored
(GPI) attachments [39]. Glycosylation is involved in various
cellular events, which has implications in various biological
functions such as antigenicity of immunological molecules,
protein's half-life, protein folding, protein targeting, cell–cell
interactions and protein stability [39]. Aberrant forms of gly-
cosylation play a major role in various human congenital
disorders. Despite technological advances, as compared to
phosphorylation, much is yet to be explored to understand
the interaction between several glycotransferases and their
corresponding substrates. Glycosylation databases provide
valuable information curated out of published reports that
helps to study glycobiology and its relevance to diseases.
General glycosylation databases such as GlycoSuiteDB anno-
tate and collect glycan structures derived from glycoproteins
of various biological sources. It contains information of
glycan types, linkages and anomeric configurations, mass,
composition and the analytical methods used to determine
the glycans structure. Current version; GlycoSuiteDB 8.0 is
composed of 9436 entries of which 3238 are unique and 1851
are completely characterized. This database is extensively
linked with the ExPASy, GlycoMod, SWISS-PROT and PubMed
and provides details on the disease relevant modifications
[40].

The glycosylation screening technologies are continuously
evolving. MS techniques and protein microarray are regularly
used to study glycosylation. One of the recent MS based data-
base screening studies by Dorota et al. revealed 6367 N-
glycosylation sites on 2352 proteins derived from four mouse
tissues and blood plasma [23]. Massive data for glycosylated
proteins thus produced are annotated in various databases.
Glycodatabases, depending upon the type of chemistry
involved in the attachment of saccharide moieties, are
available on World Wide Web (Table 4). O-glycosylation is
a process occurring in golgi apparatus, which is an
enzymatic attachment of N-Acetylgalactosamine on hydroxyl
group of Ser or Thr residues in presence of enzyme N-
Acetylgalactosaminyltransferase. Transfer of first sugar moie-
ty leads to the sequential addition of other sugar molecules in
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Fig. 4 – Different tools for PTM prediction: A number of PTM predictors are being reported every day. To date compared to tools
of other types of PTMs, phosphorylation prediction tools aremost studied. The figure segregates various tools as per the type of
PTM. Each type of PTM is presented with most popular predictors, which are available on WWW.
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synthesis of O-linked glycoprotein [39]. O-GLYCBASE and
BOLD databases provide information on O-linked glycosyla-
tion [41,42]. One of the initially reported databases, O-
GLYBASE contains information related to the glycosylation
sites and glycoproteins in context of O-linked glycosylation.
There are 242 glycoproteins and 2413 verified, non-
redundant O-glycosylation sites in this database that are
extracted from SWISS-PROT, PIR and cross-referred to se-
quence and structural databases. Another O-Linked glycosyla-
tion database, the biological O-linked database (BOLD),
provides information about glycans at four levels: glycan
structure, biological sources, glycan related references, and
methods for the identification and characterization of gly-
cans. Very recently Jinlian Wang et al. reported first publicly
available largest collection of O-GlcNAcylated proteins and
sites called dbOGAP. Currently the database has entry of
about 800 glycoproteins with experimentally established O-
GlcNAcylation information. This database not only provides
information about O-GlcNAcylation but also about associated
diseases, biological pathways, cellular components etc. [43].

N-linked glycosylation is one of the commonly observed types
of glycosylation in eukaryotic proteins than prokaryotic ones.
This phenomenon is localized to endoplasmic reticulum mem-
brane and involves enzymatic transfer of N-Acetylglucosamine
to asperagine residue of the proteins. Further addition of different
types of the sugar moieties takes place depending on the subtype
of N-glycoproteins. N-linked glycosylation can be mainly of three
types, namely high mannose type, hybrid and complex types.
The sequence involved in this process is Asn-Xaa-Ser/Thr, where
Xaa is not proline. Although this type of glycosylationwas initially
reported in eukaryotes, it was also observed to be present in to be
present in one of the gram-negative bacteria, Campylobacter jejuni
[44]. Similar to theO-linkedglycosylation, there areN-linkedglyco-
sylation databases such as UniPep, which provide information for
about 1522 unique N-linked glycosites. Since N-linked glycopro-
teins are major secretory, surface linked and plasma proteins,
this database intends to enable biomarker discovery. The data
originates from various biological sources such as plasma, liver,
prostate etc. Each query submitted to the database provides infor-
mation on protein, trans-membrane sequence, sub-cellular loca-
tion, predicted N-glycosylated site and biological pathway.
Information of sub-cellular location of the protein is provided on
the basis of signal peptide, which is present in the corresponding
glycoprotein [45].

4.3. Databases of other types of PTMs

Phosphorylationandglycosylationaremajor PTMs,however, there
are other PTMs, which also play an important role in various cellu-
lar events; to list a few, acetylation, ubiquitination, sulfonation,

image of Fig.�4


Table 4 – Databases and tools to study glycosylation.

SR
no

Database/tool (predictor) Features

1 O-GLYCBASE [56]
http://www.cbs.dtu.dk/databases/OGLYCBASE/

DB contains information on O and C-glycosylated proteins and their g-sites.
242 glycoprotein entries.

2 GlycoSuiteDB [40]
http://glycosuitedb.expasy.org/glycosuite/glycodb

DB of curated and annotated glycans. Entries over 9436. Provides vast variety
of options such as disease relation, taxonomy, mass etc.

3 UniPep [45]
http://www.unipep.org/

DB for human N-linked glycosites. Over 1522 unique N-linked glycosites.
A resource aids biomarker discovery.

4 NetOGlyc [56]
http://www.cbs.dtu.dk/services/NetOGlyc/

Neural network based Predictor of mucin type GalNAc O-g-sites in
mammalian proteins.

5 NetNGlyc [59]
http://www.cbs.dtu.dk/services/NetNGlyc/

Predicts N-g-sites in human proteins by examining the sequence environment
of Asn-Xaa-Ser/Thr sequences. Neural network used.

6 DictyOGlyc [72]
http://www.cbs.dtu.dk/services/DictyOGlyc/

Predicts GlcNAc O-g-sites in Dictyostelium discoideum proteins. Neural network
used.

7 YinOYang [39]
http://www.cbs.dtu.dk/services/YinOYang/

Predicts potential sites which undergo O-β-GlcNAc attachment and
phosphorylation in eukaryotic protein sequences. Neural network used.

8 OGPET [111]
http://ogpet.utep.edu/OGPET/

Predicts mucin-type O-glycosylated residues in eukaryotic proteins. Uses in
house developed variation profiling scoring systems methods for prediction.

9 NetCGlyc [61]
http://www.cbs.dtu.dk/services/NetCGlyc/

Predicts C-mannosylation sites in mammalian proteins. Neural Network used.

10 Oglyc [57]
http://www.biosino.org/Oglyc

SVM based predictor of mucin-type O-glycosylation site onmammalian proteins.

11 dbOGAP [36]
http://cbsb.lombardi.georgetown.edu/hulab/OGAP.html

DB of O-GlcNAcylated proteins and O-GlcNAcylation sites. Over 800 entries.

12 BPI [60]
http://mendel.imp.ac.at/gpi/gpi_server.html

Predicts GPI anchoring sites in the input sequence. Provides taxon option of
specific prediction.

13 GPP [58]
http://comp.chem.nottingham.ac.uk/glyco/

Prediction of N-linked and O-linked glycosylation using random forest algorithm.

14 NetGlycate [62]
http://www.cbs.dtu.dk/services/NetGlycate/

Predicts lysine glycation in mammalian proteins.

DB—Database, g-sites = glycosylation sites.
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myristoylation, prenylation, glycosyl-phosphatidylinositol anchor-
ing (GPI) etc. Although these PTMs are being studied in detail there
arevery fewdatabasesand resources to study thesePTMs.Detailed
list of databases is described in Table 5 and Fig. 3 and only few rep-
resentative ones are discussed in this section.

Lipid modifications of protein are biologically very impor-
tant, which are evident through their role in membrane func-
tion. Common lipid modifications include prenylation,
myristoylation and GPI anchoring. A unique PTM observed in
bacteria is attachment of N-acyl S-diacylglyceryl group to N-
terminal cystine, which helps to anchor bacterial proteins on
hydrophobic surfaces thereby helping in pathogenesis. DOLOP
database of bacterial N-acyl S-diacylglyceryl group attachment
modifications has entry of about 278 distinct lipoproteins from
bacterial genomes [46]. Ubiquitination encompasses attachment
C-terminal glycine of 76 amino acid polypeptide ubiquitin to ly-
sine residue of target proteins and is aided by a set of enzymes,
which leads the protein to degradation process [47]. One of the
repositories of manually curated ubiquitination site is UbiProt.
It provides information for the protein substrates of ubiquityla-
tion from the experimental data. Each ubiquitylated protein
entry provides details of the source, mode of ubiquitylation
with emphasis on conjugation cascade and covers ubiquityla-
tion patterns of organisms such as S. cerevisiae, H. sapiens, and
M. musculus [47]. Disulfide bonds in proteins involve oxidation
of thiol groups of cysteine residues and play a crucial role in
maintaining thermodynamic stability of proteins. This PTM is
widely studied for its nature due to its applicability in
biopharmaceutical products. The smallest peptide such as insu-
lin to few large enzymes like tissue plasminogen activator have
inter and intramolecular disulfide bonds. In this regard,
DSDBASE, provides comprehensive information on native disul-
fide bond present in proteins with over 2,385,617 entries [48].
5. PTM tools

Experimental results generated from the HT techniques have
demonstrated thousands of potential PTM sites but experi-
mental validation of these targets is time consuming. There-
fore, PTM predictors play a key role in studying PTM biology.
Computational prediction is made plausible due to the inher-
ent nature of PTMs, which are directed by specific enzymes
and involve specific sequence motifs recognition. Many pre-
dictors use these properties to predict the potential PTMs in
a given amino acid sequence. Predictors explore unknown
PTM sites and provide valuable information to make mean-
ingful interpretations. Unlike tools, databases require contin-
uous annotation. Otherwise, user may not get information, if
the input query is not stored or updated in the database.

5.1. Machine learning processes for prediction

Commonly used local linear alignment tools such as BLAST
are unable to precisely predict PTM sites in a given protein se-
quence, therefore, better prediction algorithms such as weight
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Table 5 – Resources to study other types of PTMs.

SR
no

Database/tool (predictor) Features

1 Ubiprot [47]
http://ubiprot.org.ru

DB of protein substrates of ubiquitylation. Manually curated database on
verified literature.

2 Saccharomyces Cerevisiae Ubiquitination Database(SCUD) [112]
http://scud.kaist.ac.kr

DB with information about ubiquitinated proteins and related enzymes in
S. cerevisiae. Has entry of over 940 substrates.

3 PlantsUPS [113]
http://bioinformatics.cau.edu.cn/plantsUPS

DB of ubiquitin/26S proteasome system of 7 species of higher plants. Vast
information on basic gene characterization, protein features and
microarray information as well as BLAST hits against various DB data.

4 Database Of Bacterial Lipoproteins (DOLOP) [46]
http://www.mrc-lmb.cam.ac.uk/genomes/dolop/

DB of Bacterial Lipoproteins. Probable lipoproteins from 234 bacterial
genomes.

5 Disulphide Database DSDBASE [48]
http://caps.ncbs.res.in/dsdbase/dsdbase.html

DB of disulphide bonds in proteins, which provides information on native
disulfides. Records 2385617 protein substructures that have stereochemical
compatibility.

6 E3Miner [114]
http://e3miner.biopathway.org

Text mining tool for ubiquitin-protein ligases. Extracting and managing
data from MEDLINE abstracts and relevant protein databases.

7 UbiPred [68]
http://flipper.diff.org/app/tools/info/2503

Predict ubiquitylation sites in query sequence. SVM built on informative
physicochemical property mining algorithm (IPMA).

8 SulfoSite [115]
http://sulfosite.mbc.nctu.edu.tw/

Tool to predict protein sulfotyrosine sites. Uses SVM.

9 Sulfinator [71]
http://au.expasy.org/tools/sulfinator/

A tool predicts tyrosine sulfation sites in protein sequences. HHM used.

10 NetAcet [116]
http://www.cbs.dtu.dk/services/NetAcet/

Predicts N-acetyltransferase A (NatA) substrates (in yeast and
mammalian proteins). ANN used.

11 Myristoylator [64]
http://web.expasy.org/myristoylator/

Predicts N-terminal myristoylation by neural networks.

12 NMT-The MYR Predictor [117]
http://mendel.imp.ac.at/myristate/SUPLpredictor.htm

Predicts N-Myristoylation for higher Eukaryote, viral and fungal query se-
quences. Self-consistency and Jack-knife test used.

13 LipoP [118]
http://www.cbs.dtu.dk/services/LipoP/

Predict lipoprotein signal peptides in Gram-negative Eubacteria. HMM
used.

14 NBA-Palm [65]
http://www.bioinfo.tsinghua.edu.cn/NBA-Palm

Predicts palmitoylation. SVMs, Naïve Bayes algorithm used.

15 Clustering and scoring strategy CSS-Palm [119]
http://csspalm.biocuckoo.org/online.php

Software for predicting Palmitoylation site. Clustering and scoring strategy
(CSS) algorithm used.

16 Prenylation Prediction Suite (PrePS) [67]
http://mendel.imp.ac.at/sat/PrePS/index.html

Predicts prenylation motifs.

17 SUMOplot [69]
http://www.abgent.com/tools/sumoplot_login

Predicts SUMO protein attachment sites and scores sumoylation sites in
proteins. BLOSUM62 for matrix, Matthews' correlated coefficient used.

18 SUMOsp [120]
http://sumosp.biocuckoo.org/

Predicts sumoylation sites. BLOSUM62 for matrix, Matthews' correlated
coefficient used.

19 LysAcet [121]
http://www.biosino.org/LysAcet/

Performs lysine acetylation prediction. SVM used.

20 Methylation Modification Prediction Server MeMo [122]
http://www.bioinfo.tsinghua.edu.cn/~tigerchen/memo.html

Tool to predict protein methylation modifications mostly Lysine and
Arginine. Uses SVMs

21 BPB-PPMS [123]
http://www.bioinfo.bio.cuhk.edu.hk/bpbppms/intro.jsp

Predicts the methylation for lysine and arginine residues by using
Bi-profile Bayes approach and SVM.

DB—Database, SVM—Support Vector Machines, NMT—N-terminal N-Myristoylation, HHM—Hidden Markov Models.
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matrices and machine learning techniques are evolved. Ma-
chine learning process involves teaching the system and
building the algorithm through which it is made to learn and
mimic the biological phenomenon of PTMs with experimen-
tally proved training dataset. Then the same algorithm is
trained to predict PTMs for a test set while it is checked for
true and false prediction. Hence, unlike simple local align-
ment tool, which just aligns the input sequence with that of
the stored sequence, the machine learning enables input of
specific properties andmakes prediction similar to an enzyme
recognizing its motif to bring in PTM.

Supervised machine learning techniques majorly involves
two aspects; training and testing. Training the system is
done through the potential PTM datasets, which are experi-
mentally derived or mined from known repositories contain-
ing curated data from literature. The training dataset should
have optimized level of positive and negative PTM sites in it.
Once a high quality dataset is ready, the input feature for pre-
diction is provided and learning functions are selected. This
prediction process is performed on training dataset to gener-
ate a classifier, which can be further used for prediction of
test dataset. The established classifier is then tested for its
performance on an independent test dataset. This is check-
point for accurate prediction of PTM sites. Inaccurate predic-
tion due to less sensitivity and specificity during the
validation brings a need to check the built algorithm. It is
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very essential that the data used for training the predictor al-
gorithmmust be error free, because an error will subsequently
produce erroneous PTM prediction. Hence, trained algorithms
provide positive and negative prediction outputs for PTM and
non-PTM sites, respectively. Presently predictors tend to pos-
sess more sensitivity than specificity but one need to balance
between specificity and sensitivity for comprehensive predic-
tion [49,50].

Supervised machine learning approaches typically use
some of the learning functions such as Artificial Neural Net-
work (ANN), Support VectorMachine (SVM) and HiddenMarkov
Models (HMMs) etc., which are unique to each predictor. For in-
stance, the SVMmethod is designed tomaximize themargin to
separate two classes so that the trained model can be general-
ized to predict the data [51]. PHOSIDA enables Support Vector
Machine (SVM) based prediction of phosphorylation and acety-
lation with 78% precision [33]. ANN is inspired by the biological
neural networks, in which each data point is represented as
neuron and interconnected as biological neuron. Multiple in-
puts are provided to generate single output from each node
and each point is trained to predict PTM site accurately. Net-
PhosK is one such ANN based kinase specific phosphorylation
site predictor, which is based on data specific to six kinases
[39].

Several prediction tools for various types of PTMs are avail-
able for public use in WWW (Fig. 4). Single prediction server
may predict one or many PTMs. FindMod present in ExPASy
server predicts about 22 different types of PTMs from input
PMF data, Swiss-Prot ID and single-letter amino acid code.
Neural network based tool such as NetNGlyc predicts specifi-
cally N-glycosylation sites in human proteins. Fengfeng
Zhou and colleagues created a user interface, which collects
32 different types of PTMs and reduces effort of searching dif-
ferent resources for multiple PTM prediction [52].

5.2. Strong prediction tools by evolving models

Similar to the advancement in mass spectrometry and other
technologies for PTM identification, the PTM prediction tools are
also evolving. The present day tools are not restricted to specific
sequence motifs but are much more advanced to provide evolu-
tionary aspects, kinase specific information, consideration of
flanking amino acids etc. For example, NetPhosKwas introduced
topredict phosphorylation sites basedonsimple sequencemotifs
but later on kinase specific information and a concept of ‘evolu-
tionary stable sites’ were introduced to make the predictions
more precise [39]. The dbPTM considers secondary and tertiary
structures, solvent accessibility of the substrate and protein do-
mains for prediction [53], whereas PHOSIDA considers structure
of the motif and evolutionary conservation of phosphosites. The
BlastP was used to perform homology search of all phosphopro-
teins over seventy species ranging from bacteria to mouse [33].

Organism specific predictors of PTMs can provide strong
prediction model by involving and teaching the system to pre-
dict the PTMs with an orientation of biological phenomenon
pertaining to a particular organism. More organism specific
databases and predictors are described in section 6. With
more andmore global proteomes being analyzed, larger train-
ing datasets are generated and it is anticipated that better pre-
dictions would evolve in days to come. In the following
section, a few common PTMs and their corresponding tools
for prediction are discussed.

5.3. Phosphorylation tools

Phosphorylation prediction tools outnumber predictors of any
other PTMs. Although there are over 500 kinases in human ge-
nome, referring to several phosphorylation sites, only a few
kinases are extensively studied. Therefore, predictors of phos-
phorylation sites are very informative. Initially, phosphoryla-
tion site prediction was only kinase driven approach, which
followed screening by incubation of a specific kinase with
large set of peptides and ATP, and resulting phosphorylation
patterns were studied to understand kinase substrate interac-
tion [30,54]. Current MS based screening and in silico predic-
tions are very efficient and far more rapid. The pattern
recognition algorithms such as ANN, SVM etc are trained for
this purpose to recognize phosphorylation sites with high
sensitivity and specificity.

A typical kinase specific phosphorylation site predictor, such
as NetPhosK, predicts the phosphorylation site using artificial
network and gives an option to choose from 18 different ki-
nases. Another predictor YinOYang, in conjunction with Net-
Phos predicts the potential sites on protein that may undergo
both glycosylation and phosphorylation [39]. A non-kinase driv-
en motif prediction approach was taken in case of Motif-X,
which is a substrate driven predictor for phosphorylation mo-
tifs. In this regard, authors developed a statistical algorithm
using two database contemporary datasets [55].

5.4. Glycosylation tools

The glycosylation process with respect to enzymes involved
and their specificity is less understood. This is because attach-
ment of saccharide chain on protein is complex as compared
to other PTMs such as methylation, acetylation or phosphory-
lation, where transfer of chemical and covalent attachment is
more or less a single step process. N and O-linked glycosyla-
tions are two mostly studied glycosylation types and hence
much of predictors are centered to these types.

NetOglyc is a predictor formammalianmucin type GalNAcO-
glycosylation sites. The authors showed high confidence predic-
tion of glycosylation sites by training ANN with data extracted
from O-GLYCBASE. This prediction was based on action of UDP-
GalNAc:polypeptide N-acetylgalactosaminyltransferases com-
plex, its specificity for Serine or Threonine and charged residues
in −1 and +3 position. ANN trained in all these features resulted
in good prediction (76% prediction of glycosylated and 93% of
non-glycosylated sites) [56]. One of the SVM based mucin-type
O-glycosylation site predictors of mammalian protein is Oglyc,
which considers the sequence of O-glycosylation, physical prop-
erties of amino acids and binary way of representing the se-
quence. Positive and negative datasets for training SVM
were obtained from Swiss-Prot/UniProt [57]. Glycosylation
prediction program (GPP) uses random forest along with in-
formation about pair wise pattern to predict glycosylation
sites. Training dataset was extracted from OGLYCBASE. Au-
thors have made an effort to make the prediction better by
introducing further information such as hydrophobicity, pre-
dicted secondary structure and predicted surface accessibility
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[58]. NetNglyc predicts N-Glycosylation sites in human proteins
using ANN and it was trained with 469 positive and 309 negative
glycosylation sites. During cross validation, the method yielded
identification of 86 and 61% of glycosylated and non-
glycosylated sites, respectively [59]. Other types of glycosylation
such as GPI anchoring, C-mannsylation, and glycations have
also attracted researchers attention to develop supervised ma-
chine learning based predictors. To name a few, BigPI predicts
Glycosylphosphatidylinositol (GPI) attachment sites [60], NetC-
Glyc predicts mammalian C-mannosylation sites [61] and Net-
Glycate predicts glycation sites for mammalian proteins [62].
Since studying glycosylation sites is complex, availability of gly-
cosylation tools would definitely help researchers to provide pre-
dictions of this crucial PTM.

5.5. Other PTM related tools

Majority of PTM tools are centered on two most common
PTMs, phosphorylation and glycosylation; however, there are
around 300 other types of PTMs, which are also biologically
important. Few prominent tools are discussed in this section
and detailed predictors for various types of PTMs are de-
scribed in Table 5. Myristoylation is addition of myristoyl
group to the N-terminal of glycine residue of a protein with
an enzyme N-myristoyltransferase. Apart from eukaryotes,
myristoylation is also found to be associated with viral pro-
teins [63]. Myristoylator, a predictor for myristoylation sites
in a given amino acid sequence, is one of the best myristoyla-
tion predictors available with false discovery positive error
rate of 2.1% [64]. This predictor uses neural network, trained
with 390 positive and 327 negative sequences. NBA-palm, a
predictor of palmitoylated sites, is designed on basis of
Naïve Bayes algorithm. The algorithm was trained with
Fig. 5 – Organism specific PTM databases and prediction tools: O
providing information about PTMs in context of organism. This a
to those of general ones due to higher sensitivity and specificity
bases and tools are presented.
help of 245 palmitoylated sites from 105 non-redundant pro-
teins [65].

Prenylation is another PTM inwhich an isoprenoid tail is at-
tached to the end of a substrate protein's cysteine residues in
C-terminal. Prenylation helps to localize the protein to cellular
membranes and aids in mediating protein–protein interac-
tions [66]. PrePS is a predictor of prenylation site, which is
designed on the basis of experimentally established sequence
recognition patterns of enzymes such as farnesyltransferase,
geranylgeranyltransferase 1 and 2. The web interface predicts
prenylation for all three enzymes [67]. UbiPred is ubiquitina-
tion predictor tool, which adopts a random forest classifier
and predicts potential ubiquitination sites in given query pro-
teins. This classifier was trained on a set of 266 non-redundant
empirically verified ubiquitination sites [68]. SUMOplot pre-
dicts SUMOylation sites in given protein sequence [69]. Sulfo-
nation is a unique type of PTM, which transfers sulfate group
to the protein. It is found to be evolutionarily conserved in pro-
teins of wide range of organisms e.g. Plasmodium falciparum, in-
vertebrate such as Lymnaea stagnalis and humans, there by
linking it in broader evolutionary context [70]. Sulfinator is a
Hidden Markov Model based tool available on Expasy server
which predicts tyrosin sulfonation sites [71]. Availability of
various PTM tools is very crucial for PTM research and it is im-
portant to continuously update and annotate these databases
and tools.
6. Organism specific database and tools

Organism specific predictors help to predict the PTM patterns of
an organism by using prediction systems, which are trained spe-
cifically in context of an organism. This enables incorporation of
rganism specific tools and databases are more precise in
pproach is proved better for PTM prediction when compared
of prediction. Some of the common organism specific data
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unique features into training dataset pertaining to a specific or-
ganismandmakes the predictionmore targeted (Fig. 5). Ramneek
Gupta and colleagues developed, DictyOGlyc,which is ANNbased
O-linked GlcNAc glycosylation predictor for secreted and mem-
brane proteins of Dictyostelium discoideum. This predictor is useful
sinceDictyostelium serves as amodel organism to study glycosyla-
tion of eukaryotes [72]. NetPhosBac and NetPhosYeast are two
ANN-based kinase predictors for bacterial and yeast proteins, re-
spectively [73,74]. Thesepredictors canbeused to screenpotential
substrates of protein kinases or to distinguish phosphorylated
and non-phosphorylated protein forms. PhosPhAT, a database
of phosphorylation sites in Arabidopsis, contains data produced
by MS experiments and annotations in database are linked with
mass spectrum to provide information in context of their biologi-
cal significance. This database also contains a predictor, which
predicts the potential phosphorylation sites [75]. virPTM is first
virus PTM database which contains manually curated informa-
tion for 329 phosphorylation sites of 53 different human viruses
[76]. A detailed list of organism-specific database and tools are
listed in Figure 5.
7. Conclusions

Proteomics has enhanced our understanding of diverse and
complex PTMs by applying various advanced techniques
such as mass spectrometry. Enormous data generated by var-
ious HT methods are curated and shared worldwide with help
of dedicated databases. The growing number of databases
provides researchers various resources; however, due to the
complexity of PTMs, no database can provide a holistic solu-
tion. To provide accurate information, the databases require
continuous update of new dataset. In this regard, Swiss Prot,
HPRD, Phospho.ELM etc. provide comprehensive and latest
collection of data. Apart from the database, the PTM predic-
tion tools also play an important role due to their rapidness
and accuracy of prediction. These databases and tools are
powerful resources to reduce the time and effort of re-
searchers for PTM prediction since identifying PTMs in vitro
is always challenging. However, by using newer and advanced
machine learning methods these prediction tools can be
made more effective. The comprehensive tables for variety
of PTMs described in this article will provide researchers a re-
source for selecting PTM databases and tools best suited for
their PTM research; however, based on the type of application,
one must be very careful in choosing the right database or
predictor. The user may look into details such as the algo-
rithm used for prediction, the accuracy of prediction etc. Sim-
ilarly, the databases can be looked into details such as how
often and effectively they are updated. Undoubtedly, in years
to come, the computational resources will provide great
value, and extend its analysis to decipher the role of PTMs in
signaling pathways and related ailments.
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